CT-AI実践ガイドまたはシステムの内容が更新された場合、更新された情報を電子メールアドレスに送信します。もちろん、製品の更新状況については、当社の電子メールをご覧ください。 CT-AI模擬試験を使用してCT-AI試験に合格するように協力できることを願っています。コンテンツの更新に加えて、CT-AIトレーニング資料のシステムも更新されます。ご意見がありましたら、私たちの共通の目標は、ユーザーが満足する製品を作成することであると言えます。学習を開始した後、メールをチェックするための固定時間を設定できることを願っています。
CT-AI試験に合格しなかった、または難しすぎると認定試験を放棄したい場合は、ISTQB認定を取得した後にその利点について考えてください。 多くの特別なポジションでは、従業員に資格が必要です。 試験に合格することが非常に難しいと思われる場合は、CT-AI有効な試験問題集PDFが目標の達成に役立ちます。 試験資料は実際のテストセンターから収集され、経験豊富な専門家によって編集されます。 100%の合格率が必要な場合、CT-AI有効な試験対策PDFが役立ちます。
CT-AI認定試験について、あなたはどうやって思っているのですか。非常に人気があるISTQBの認定試験の一つとして、この試験も大切です。しかし、試験の準備をよりよくできるために試験参考書を探しているときに、優秀な参考資料を見つけるのはたいへん難しいことがわかります。では、どうしたらいいでしょうか。大丈夫ですよ。Japancertはあなたの望みを察して、受験生の皆さんの要望にこたえるために、一番良い試験CT-AI問題集を提供してあげます。
| トピック | 出題範囲 |
|---|---|
| トピック 1 |
|
| トピック 2 |
|
| トピック 3 |
|
| トピック 4 |
|
| トピック 5 |
|
| トピック 6 |
|
質問 # 37
A system was developed for screening the X-rays of patients for potential malignancy detection (skin cancer).
A workflow system has been developed to screen multiple cancers by using several individually trained ML models chained together in the workflow.
Testing the pipeline could involve multiple kind of tests (I - III):
I.Pairwise testing of combinations
II.Testing each individual model for accuracy
III.A/B testing of different sequences of models
Which ONE of the following options contains the kinds of tests that would be MOST APPROPRIATE to include in the strategy for optimal detection?
SELECT ONE OPTION
正解:A
解説:
The question asks which combination of tests would be most appropriate to include in the strategy for optimal detection in a workflow system using multiple ML models.
* Pairwise testing of combinations (I): This method is useful for testing interactions between different components in the workflow to ensure they work well together, identifying potential issues in the integration.
* Testing each individual model for accuracy (II): Ensuring that each model in the workflow performs accurately on its own is crucial before integrating them into a combined workflow.
* A/B testing of different sequences of models (III): This involves comparing different sequences to determine which configuration yields the best results. While useful, it might not be as fundamental as pairwise and individual accuracy testing in the initial stages.
:
ISTQB CT-AI Syllabus Section 9.2 on Pairwise Testing and Section 9.3 on Testing ML Models emphasize the importance of testing interactions and individual model accuracy in complex ML workflows.
質問 # 38
Which ONE of the following options represents a technology MOST TYPICALLY used to implement Al?
SELECT ONE OPTION
正解:B
解説:
* Technology Most Typically Used to Implement AI: Genetic algorithms are a well-known technique used in AI . They are inspired by the process of natural selection and are used to find approximate solutions to optimization and search problems. Unlike search engines, procedural programming, or case control structures, genetic algorithms are specifically designed for evolving solutions and are commonly employed in AI implementations.
* Reference: ISTQB_CT-AI_Syllabus_v1.0, Section 1.4 AI Technologies, which identifies different technologies used to implement AI.
質問 # 39
Data used for an object detection ML system was found to have been labelled incorrectly in many cases.
Which ONE of the following options is most likely the reason for this problem?
SELECT ONE OPTION
正解:A
解説:
The question refers to a problem where data used for an object detection ML system was labelled incorrectly.
This issue is most closely related to "accuracy issues." Here's a detailed explanation:
* Accuracy Issues: The primary goal of labeling data in machine learning is to ensure that the model can accurately learn and make predictions based on the given labels. Incorrectly labeled data directly impacts the model's accuracy, leading to poor performance because the model learns incorrect patterns.
* Why Not Other Options:
* Security Issues: This pertains to data breaches or unauthorized access, which is not relevant to the problem of incorrect data labeling.
* Privacy Issues: This concerns the protection of personal data and is not related to the accuracy of data labeling.
* Bias Issues: While bias in data can affect model performance, it specifically refers to systematic errors or prejudices in the data rather than outright incorrect labeling.
References:This explanation is consistent with the concepts covered in the ISTQB CT-AI syllabus under dataset quality issues and their impact on machine learning models.
質問 # 40
You are testing an autonomous vehicle which uses AI to determine proper driving actions and responses. You have evaluated the parameters and combinations to be tested and have determined that there are too many to test in the time allowed. It has been suggested that you use pairwise testing to limit the parameters. Given the complexity of the software under test, what is likely the outcome from using pairwise testing?
正解:A
解説:
The syllabus states that while pairwise testing is effective at finding defects by reducing the number of test cases needed, the resulting test suite can still be extensive and require automation:
"Even the use of pairwise testing can result in extensive test suites... automation and virtual test environments often become necessary to allow the required tests to be run." (Reference: ISTQB CT-AI Syllabus v1.0, Section 9.2, Page 67 of 99)
質問 # 41
Upon testing a model used to detect rotten tomatoes, the following data was observed by the test engineer, based on certain number of tomato images.
For this confusion matrix which combinations of values of accuracy, recall, and specificity respectively is CORRECT?
SELECT ONE OPTION
正解:C
解説:
To calculate the accuracy, recall, and specificity from the confusion matrix provided, we use the following formulas:
* Confusion Matrix:
* Actually Rotten: 45 (True Positive), 8 (False Positive)
* Actually Fresh: 5 (False Negative), 42 (True Negative)
* Accuracy:
* Accuracy is the proportion of true results (both true positives and true negatives) in the total population.
* Formula: Accuracy=TP+TNTP+TN+FP+FN ext{Accuracy} = rac{TP + TN}{TP + TN + FP + FN}Accuracy=TP+TN+FP+FNTP+TN
* Calculation: Accuracy=45+4245+42+8+5=87100=0.87 ext{Accuracy} = rac{45 + 42}{45 + 42
+ 8 + 5} = rac{87}{100} = 0.87Accuracy=45+42+8+545+42=10087=0.87
* Recall (Sensitivity):
* Recall is the proportion of true positive results in the total actual positives.
* Formula: Recall=TPTP+FN ext{Recall} = rac{TP}{TP + FN}Recall=TP+FNTP
* Calculation: Recall=4545+5=4550=0.9 ext{Recall} = rac{45}{45 + 5} = rac{45}{50} = 0.9 Recall=45+545=5045=0.9
* Specificity:
* Specificity is the proportion of true negative results in the total actual negatives.
* Formula: Specificity=TNTN+FP ext{Specificity} = rac{TN}{TN + FP}Specificity=TN+FPTN
* Calculation: Specificity=4242+8=4250=0.84 ext{Specificity} = rac{42}{42 + 8} = rac{42}
{50} = 0.84Specificity=42+842=5042=0.84
Therefore, the correct combinations of accuracy, recall, and specificity are 0.87, 0.9, and 0.84 respectively.
References:
ISTQB CT-AI Syllabus, Section 5.1, Confusion Matrix, provides detailed formulas and explanations for calculating various metrics including accuracy, recall, and specificity.
"ML Functional Performance Metrics" (ISTQB CT-AI Syllabus, Section 5).
質問 # 42
......
Japancertは、受験者向けのCT-AI試験資料を作成するための専門的なプラットフォームです。CT-AI試験に合格し、関連する認定をより効率的で簡単な方法で取得できるようお手伝いします。当社のCT-AI試験材料の優れた品質とリーズナブルな価格により、当社のCT-AI試験トレントは、国際分野の他のメーカーよりも価格が優れているだけでなく、多くの点で明らかに優れています。 CT-AI試験問題集の合格率は99%〜100%であり、これは市場で独特です。
CT-AI勉強方法: https://www.japancert.com/CT-AI.html
