Wenn Sie die schwierige Amazon MLA-C01 Zertifizierungsprüfung bestehen wollen, ist es unmöglich für Sie bei der Vorbereitung keine richtige Schulungsunterlagen benutzen. Wenn Sie die ausgezeichnete Lernhilfe finden wollen, sollen Sie an Fast2test diese Prüfungsunterlagen suchen. Wir Fast2test haben sehr guten Ruf und haben viele ausgezeichnete Dumps zur Amazon MLA-C01 Prüfung. Und wir bieten kostenlose Demo aller verschieden Dumps. Wenn Sie suchen, ob Fast2test Dumps für Sie geeignet sind, können Sie zuerst die Demo herunterladen und probieren.
Thema | Einzelheiten |
---|---|
Thema 1 |
|
Thema 2 |
|
Thema 3 |
|
Thema 4 |
|
Die Amazon MLA-C01 Zertifizierungsprüfung ist zur Zeit sehr beliebt bei den IT-Fachleuten. Durch die Amazon MLA-C01 Zertifizierungsprüfung werden Ihre Lebens-und Arbeitsverhältnisse verbessert. Daneben wird Ihre Position in der IT-Branche gefestigt.
72. Frage
An ML engineer is training a simple neural network model. The ML engineer tracks the performance of the model over time on a validation dataset. The model's performance improves substantially at first and then degrades after a specific number of epochs.
Which solutions will mitigate this problem? (Choose two.)
Antwort: A,B
Begründung:
Early stopping halts training once the performance on the validation dataset stops improving. This prevents the model from overfitting, which is likely the cause of performance degradation after a certain number of epochs.
Dropout is a regularization technique that randomly deactivates neurons during training, reducing overfitting by forcing the model to generalize better. Increasing dropout can help mitigate the problem of performance degradation due to overfitting.
73. Frage
A company has trained an ML model in Amazon SageMaker. The company needs to host the model to provide inferences in a production environment.
The model must be highly available and must respond with minimum latency. The size of each request will be between 1 KB and 3 MB. The model will receive unpredictable bursts of requests during the day. The inferences must adapt proportionally to the changes in demand.
How should the company deploy the model into production to meet these requirements?
Antwort: D
Begründung:
Amazon SageMaker real-time inference endpoints are designed to provide low-latency predictions in production environments. They offer built-in auto scaling to handle unpredictable bursts of requests, ensuring high availability and responsiveness. This approach is fully managed, reduces operational complexity, and is optimized for the range of request sizes (1 KB to 3 MB) specified in the requirements.
74. Frage
An ML engineer normalized training data by using min-max normalization in AWS Glue DataBrew. The ML engineer must normalize the production inference data in the same way as the training data before passing the production inference data to the model for predictions.
Which solution will meet this requirement?
Antwort: A
Begründung:
To ensure consistency between training and inference, themin-max normalization statistics (min and max values)calculated during training must be retained and applied to normalize production inference data. Using the same statistics ensures that the model receives data in the same scale and distribution as it did during training, avoiding discrepancies that could degrade model performance. Calculating new statistics from production data would lead to inconsistent normalization and affect predictions.
75. Frage
A company wants to develop an ML model by using tabular data from its customers. The data contains meaningful ordered features with sensitive information that should not be discarded. An ML engineer must ensure that the sensitive data is masked before another team starts to build the model.
Which solution will meet these requirements?
Antwort: D
Begründung:
AWS Glue DataBrew provides an easy-to-use interface for preparing and transforming data, including masking or obfuscating sensitive information. It offers built-in data masking features, allowing the ML engineer to handle sensitive data securely while retaining its structure and meaning. This solution is efficient and requires minimal coding, making it ideal for ensuring sensitive data is masked before model building begins.
76. Frage
A company has implemented a data ingestion pipeline for sales transactions from its ecommerce website. The company uses Amazon Data Firehose to ingest data into Amazon OpenSearch Service. The buffer interval of the Firehose stream is set for 60 seconds. An OpenSearch linear model generates real-time sales forecasts based on the data and presents the data in an OpenSearch dashboard.
The company needs to optimize the data ingestion pipeline to support sub-second latency for the real-time dashboard.
Which change to the architecture will meet these requirements?
Antwort: D
Begründung:
Amazon Kinesis Data Firehose allows for near real-time data streaming. Setting thebuffering hintsto zero or a very small value minimizes the buffering delay and ensures that records are delivered to the destination (Amazon OpenSearch Service) as quickly as possible. Additionally, tuning thebatch sizein thePutRecordBatchoperation can further optimize the data ingestion for sub-second latency. This approach minimizes latency while maintaining the operational simplicity of using Firehose.
77. Frage
......
Unser Fast2test bietet den Kandidaten nicht nur gute Produktem sondern auch vollständigen Service. Wenn Sie unsere Produkte benutzen, können Sie einen einjährigen kostenlosen Update-Service genießen. Wir benachrichtigen den Kandidaten in erster Zeit die neuen Prüfungsmaterialien zur Amazon MLA-C01 Zertifizierung mit dem besten Service.
MLA-C01 Prüfungsaufgaben: https://de.fast2test.com/MLA-C01-premium-file.html